

NEW FLAVONOIDS FROM *INULA CAPPA**NABIN C. BARUAH†, RAM P. SHARMA†, GOPALAKRISHNA THYAGARAJAN†,
WERNER HERZ‡ and SERENGOLAM V. GOVINDAN‡

† Department of Organic Chemistry, Regional Research Laboratory, Jorhat-785006, Assam, India;

‡ Department of Chemistry, The Florida State University, Tallahassee, FL 32306, U.S.A.

(Received 30 April 1979)

Key Word Index—*Inula* *cappa*; Inuleae; Compositae; flavonoids.

Abstract—Extraction of *Inula cappa* DC. yielded three new flavonoids with an unusual ring B substitution pattern, namely (2R,3R)-5'-methoxy-3,5,7,2'-tetrahydroxyflavone, (2S)-5,7,2',5'-tetrahydroxyflavanone and 7,5'-dimethoxy-3,5,2'-trihydroxyflavone. Structures were established by chemical correlation, spectroscopic studies and degradation.

INTRODUCTION

Sesquiterpene lactones of different skeletal types have been isolated from various *Inula* species [1, §]. Because of our interest in the distribution of such lactones we have examined *Inula cappa* DC. Although no lactones were found we hereby report the isolation and structure determination of three new closely related flavonoids which possess an unusual ring B disubstitution pattern, namely (2R,3R)-5'-methoxy-3,5,7,2'-tetrahydroxyflavone (**1a**), (2S)-5,7,2',5'-tetrahydroxyflavanone (**2a**) and 7,5'-dimethoxy-3,5,2'-trihydroxyflavone (**3a**).

RESULTS AND DISCUSSION

Substance **1a**, $C_{16}H_{14}O_7$, mp 98–100°, was a dihydroflavanol, as evidenced by the typical NMR signals of H-2 and H-3, which contained three additional hydroxyl groups (formation of tetraacetate **1b**) and one methoxyl (NMR spectrum). Two of the hydroxyl groups were located at C-5 and C-7 on the basis of the UV shifts [2] and by comparing the NMR spectra of **1b** and **1a** TMSi ether taken at 270 MHz (in the NMR spectrum of **1a** the H-6 and H-8 signals were superimposed). This was confirmed by the mass spectrum which exhibited the diagnostic peak at *m/e* 153 characteristic of the retro-Diels-Alder cleavage of ring C [3] and by the ^{13}C NMR spectrum (Table 1) which exhibited frequencies for C-2 through C-8 essentially identical with those in the spectra

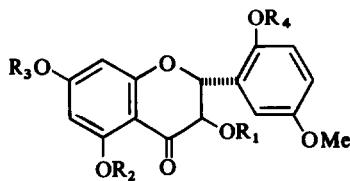
Table 1. ^{13}C NMR spectrum of **1a***

C-2	82.77 <i>d</i>	C-10	100.34
C-3	71.52 <i>d</i>	C-1'	129.65
C-4	197.38	C-2'	147.87†
C-5	163.23	C-3'	119.11 <i>d</i> ‡
C-6	96.01 <i>d</i>	C-4'	115.00 <i>d</i> ‡
C-7	166.85	C-5'	146.13†
C-8	94.97 <i>d</i>	C-6'	111.69 <i>d</i>
C-9	162.36	OMe	55.62 <i>q</i>

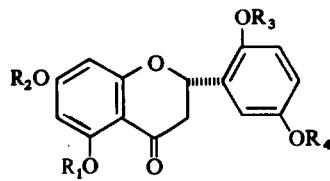
* Run in $DMSO-d_6$ at 67.905 MHz Unmarked signals are singlets.

† Assignments interchangeable.

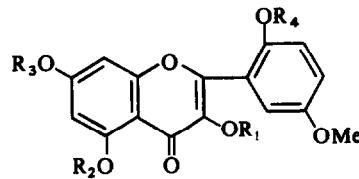
‡ Probable assignments.

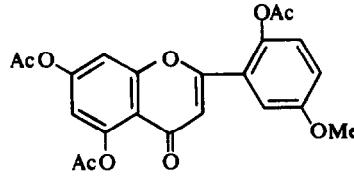

of a number of authentic 5,7-dihydroxyflavanones and dihydroflavanols [4, 5].

Locating the hydroxyl and methoxyl substituents of ring B was more difficult as neither the NMR spectra of the TMSi ether and the tetraacetate nor the ^{13}C NMR spectrum of **1a** permitted an unambiguous distinction between 3',4'-, 2',4'-, or 2',5'-disubstitution. As regards 3',4'-disubstitution, the presence of 5,7,4'-trihydroxy-3'-methoxydihydroflavanol was ruled out by the known properties of this substance [6], but the 3'-hydroxy-4'-methoxy isomer is known only as the racemate [7]. However, the following correlations eliminated this possibility as well as the possibility of 2',4'-disubstitution.


Zn dust reduction converted tetraacetate **1b** to a flavanone **2d** which was hydrolysed to **2e** on treatment with methanolic HCl. Methylation of **2e** with diazomethane gave a monohydroxytrimethoxyflavone **2c**, mp 155–156°, which was different from homoeriodictyol and hesperetin [8]. Hence **1a** was not 3',4'-disubstituted. **2c** was, however, identical with a trimethyl ether prepared by diazomethane treatment of a tetrahydroxyflavanone **2a**, mp 195°, a minor constituent of *I. cappa* which had hydroxyl groups on C-5 and C-7 (UV shifts, NMR spectrum of TMSi ether) and was characterized as a tetraacetate, **2b**. Its physical properties distinguished **2a** from both eriodictyol [8] and steppogenin (5,7,2',4'-tetrahydroxyflavanone) [9]. Consequently **2a** was 5,7,2',5'-tetrahydroxyflavanone and **1a** was either 2'-methoxy-5,7,5'-trihydroxy- or 5'-methoxy-5,7,2'-trihydroxydihydroflavanol.

* Work at the Florida State University supported by a grant from the U.S. Public Health Service (CA-13121) through the National Cancer Institute.


† Additional reports since publication of ref. [1] include (a) Pyrek, J. St. (1977) *Roczn. Chem.* **51**, 1277 and Bohlmann, F. and Zdero, C. (1977) *Phytochemistry* **16**, 1243—*Inula britannica*. (b) Konovalova, O. A., Rybalko, K. S. and Sheichenko, V. I. (1974) *Khim. Prir. Soedin.* **10**, 578—*I. germanica*. (c) Bohlmann, F., Mahanta, P. K., Jakupovic, J., Rastogi, R. C. and Natu, A. A. (1978) *Phytochemistry* **17**, 1165—*I. helenium*, *royleana* and *salicina*. (d) Evstratova, R. I., Sheichenko, V. I. and Rybalko, K. S. (1974) *Khim. Prir. Soedin.* **10**, 730—*I. japonica*. (e) Ravindranath, K. R., Paknikar, S. K., Trivedi, G. K. and Bhat-tacharyya, S. C. (1978) *Indian J. Chem.* **16B**, 27—*I. racemosa*. (f) Bohlmann, F., Czerson, H. and Schöneweiss, S. (1977) *Chem. Ber.* **110**, 1330—*I. viscosa*.


1a $R_1 = R_2 = R_3 = R_4 = H$
 1b $R_1 = R_2 = R_3 = R_4 = Ac$
 1c $R_3 = Me, R_1 = R_2 = R_4 = H$
 1d $R_3 = R_4 = Me, R_1 = R_2 = H$

2a $R_1 = R_2 = R_3 = R_4 = H$
 2b $R_1 = R_2 = R_3 = R_4 = Ac$
 2c $R_1 = H, R_2 = R_3 = R_4 = Me$
 2d $R_1 = H, R_4 = Me, R_2 = Ac, R_3 = H$
 or $R_2 = H, R_3 = Ac$
 2e $R_1 = R_2 = R_3 = H, R_4 = Me$

3a $R_1 = R_2 = R_4 = H; R_3 = Me$
 3b $R_1 = R_2 = R_4 = Ac; R_3 = Me$
 3c $R_1 = R_3 = R_4 = Me; R_2 = H$
 3d $R_1 = R_2 = R_3 = R_4 = H$
 3e $R_1 = R_2 = R_3 = R_4 = Ac$
 3f $R_1 = R_2 = R_3 = R_4 = Me$

4

Additional evidence for this conclusion was provided by interrelating 1a with a third *I. cappa* constituent, 3a, mp 205°, $C_{17}H_{14}O_7$. This was a dihydroxydimethoxyflavonol with a hydroxyl group on C-5 and a methoxyl group on C-7 (UV shifts, NMR spectrum) which was different from ombuin and rhamnazin [8] and was further characterized as a triacetate. Dehydrogenation of 1a with sulfuric acid [10] furnished a flavonol 3d different from isorhamnetin and tamarixetin. The corresponding acetate 3e, together with the anhydro derivative 4, was obtained by refluxing 1a with acetic anhydride [10]. Treatment of 3d with diazomethane gave a trimethyl ether different from the tetramethyl ethers of quercetin and morin [8], but identical with a substance prepared by methylation of 3a with methyl diazomethane. Hence 1a and 3a had the same 2',5'-substitution pattern on ring B. Lastly, methylation of 3a with methyl iodide-K₂CO₃ yielded a trimethyl ether, mp 142°, whose properties were identical with those reported for synthetic 3,5,7,2',5'-pentamethoxyflavone [11] but different from the properties of the pentamethyl ethers of quercetin and morin [8].

Methylation of 1a with diazomethane afforded not only the expected trimethyl ether 1d, but also a dimethyl ether 1c which was dehydrogenated to 3a by treatment with H₂SO₄. The unexpected formation of 1c suggested that the free hydroxyl group on ring B was attached to C-2' rather than C-5' and hydrogen bonded to O-1 or to the C-3 hydroxyl. This deduction was confirmed by alkali cleavage of 3a which resulted in the formation of 2-hydroxy-5-methoxybenzoic acid rather than the 2-methoxy-5-hydroxy isomer. Consequently 1a and 3a are 2'-hydroxy-5'-methoxyflavonoids.

1a and 2a exhibit small rotations of opposite sign at the sodium D line, the signs (1a negative, 2a positive) being in accordance with those of most naturally occurring dihydroflavanols and flavanones [3]. The relative configuration of 1a (2-aryl and 3-hydroxyl equatorial) was

evident from the NMR spectrum ($J_{2,3} = 12$ Hz). The absolute configuration is 2R,3R as illustrated because of the resemblance of the CD curve in the n,π^* and π,π^* region to the CD curves of dihydroflavanols of established absolute configuration [12], although the two extrema are displaced to somewhat shorter wavelengths than usual (318 and 284 nm). The CD curve of 2a exhibits n,π^* and π,π^* Cotton effects of the same sign, albeit very much reduced in intensity, at 314 and 274 nm which we take to confirm the 2S chirality expected from a congener of 1a and from the chemical correlation of 2a with 1a. It appears likely that the reduced rotational strength displayed by 2a is to be ascribed to factors inherent in its structure (2'-OH?), cf. the data reported [12] for artocarpanone) rather than to it being partially racemized. In the latter case an equal amount of racemization would have to accompany the hydrogenolysis of 1b to 2d since 2c prepared from 2e had the same mp as 2c prepared from 2a and the mp was not depressed.

Although derivatives of 2',4',5'-trihydroxyflavonoids have been described, we are not aware of any other naturally-occurring flavonoids beyond the chalcone stage with the unusual 2',5'-disubstitution pattern found in the compounds from *I. cappa*. Whether such compounds are more generally distributed in the genus remains to be seen.

EXPERIMENTAL

Extraction of Inula cappa. Above ground parts of *Inula cappa* DC, wt 2 kg, collected in the Golaghat area of Assam, India, were extracted with CHCl₃ in a Soxhlet apparatus until the extract was colorless. The crude extract, obtained by evapn of CHCl₃ at red. pres., was dissolved in 400 ml MeOH containing 10% H₂O and left overnight. The ppt. was filtered and the filtrate washed with six 200 ml portions of petrol (bp 60–80°). The MeOH layer was concd at red. pres. and the residue extracted with CHCl₃. Evapn of the washed and dried extract yielded

17 g of gum which was chromatographed over 350 g Si gel (60–120 mesh, BDH, India), 150 ml fractions being collected in the following order: fractions 1–10 (C_6H_6), 11–20 (C_6H_6 –EtOAc, 9:1), 21–30 (C_6H_6 –EtOAc, 4:1), 31–40 (C_6H_6 –EtOAc, 2:1), 41–50 (C_6H_6 –EtOAc, 1:1), 51–60 (C_6H_6 –EtOAc, 1:2), 61–70 (C_6H_6 –EtOAc, 1:4), 71–80 (EtOAc), 81–90 (EtOAc–MeOH, 99:1), 91–100 (EtOAc–MeOH, 19:1), 101–110 (EtOAc, 9:1) and 111–120 (EtOAc–MeOH, 4:1).

Fractions 32–39 showed a single spot on TLC and were combined to yield 0.102 g of **3a**, mp 205° after recrystallization from EtOAc; IR bands ($CHCl_3$) 3400, 1725 and 1640 cm^{-1} , UV spectrum λ_{max}^{MeOH} 270 and 340 nm, with NaOAc 270 and 365 nm; NMR signals (60 MHz, $CDCl_3$) at δ 12.65 (5-OH), 7.2–7.5 (3H of ring B), 6.40 d (J = 2 Hz, H-8), 6.30 d (2, H-6), 3.95 and 3.85 ppm (methoxyls). The low resolution MS exhibited the molecular ion at m/e 330 (100%) and other major peaks at m/e 315 (40%), 313 (25%), 300 (25%) and 287 (80%). (Calc. for $C_{17}H_{14}O_7$: MW, 330.07385. Found: MW (MS): 330.07365.

Fractions 45–68, which showed two spots on TLC, were combined and subjected to PLC (C_6H_6 –EtOAc, 2:1). The less polar constituent **1a** was recrystallized from EtOAc, yield 0.310 g, mp 98–100°, IR bands ($CHCl_3$) 3520, 1730, 1640 and 1590 cm^{-1} ; UV spectrum λ_{max}^{MeOH} 290 nm, sh at 332 nm, with NaOAc 327 nm, sh at 280 nm; $[\alpha]_{D}^{22} - 4.7^\circ$ (MeOH, c 0.068); CD curve $[\theta]_{318} + 3550$ (max), $[\theta]_{284} - 25100$ (min), $[\theta]_{238} + 770$ (sh), $[\theta]_{216} + 18000$ (max), $[\theta]_{214} + 16500$ (last reading); NMR signals (60 MHz, Me_2CO-d_6) at δ 6.60 d (2, H-6'), 6.55 (2H, H-3' and H-4'), 5.30 (2H, H-6 and H-8), 4.60 d (12, H-2), 4.10 d (12, H-3), 3.40 ppm (methoxyl); NMR (270 MHz, TMSi ether, $CDCl_3$): δ 7.04 dd (9.2, H-4'), 6.99 d (2, H-6'), 6.88 d (9, H-3'), 6.10 d (2, H-8), 5.96 d (2, H-6), 4.99 d (11, H-3), 4.26 d (11, H-2), 3.86 (methoxyl), 0.29, 0.28, 0.25, 0.08 ppm (methyls of TMSi ether); low resolution MS m/e 318 (M^+ , 40%), 300 (20%), 289 (80%), 165 (60%) and 153 (100%). (Calc. for $C_{16}H_{14}O_7$: C, 60.37; H, 4.43. Found: C, 60.10; H, 4.25%).

The more polar compound **2a** was recrystallized from MeOH, mp 195° (dec), yield 0.085 g, UV λ_{max}^{MeOH} 290 nm, with NaOAc 288 and 323 nm; $[\alpha]_{D}^{22} + 5.4^\circ$ (MeOH, 0.00002); CD curve $[\theta]_{342} - 50$ (min), $[\theta]_{314} + 300$ (max), $[\theta]_{274} - 1600$ (min), $[\theta]_{230} - 90$ (last reading); NMR signals (60 MHz, Me_2CO-d_6) at 6.60 d (2, H-6'), 6.40 (2H, H-3' and H-4'), 5.50 (2H, H-6 and H-8), 4.80 dd (12,3, H-2), 2.60 m (H-3a and H-3b); NMR of TMSi ether (270 MHz, $CDCl_3$): δ 6.88 c (H-3', H-4' and H-6'), 6.13 d (2, H-8), 5.95 d (H-6), 5.25 dd (13,3, H-2), 2.69 dd (18,13) and 2.95 dd (18,3) (H-3a and H-3b), 0.30, 0.30, 0.26 and 0.25 ppm (methyls of TMSi ether); low resolution MS m/e 288 (M^+ , 50%), 271 (28%), 154 (100%) and 134 (80%). (Calc. for $C_{15}H_{14}O_6$: C, 62.50; H, 4.20. Found: C, 62.18; H, 4.12%).

Reactions of 1a. (a) A solution of 0.050 g of **1a** in 1 ml Ac_2O was allowed to stand with one drop of conc. H_2SO_4 overnight, diluted with water and extracted with Et_2O . The washed and dried extract was evapd and the residue (**1b**) recrystallized from EtOAc, yield 0.052 g, mp 74–78°; NMR signals (270 MHz, $CDCl_3$) at δ 7.33 dd (9.2, H-4'), 7.12 d (2, H-6'), 7.00 d (9, H-3'), 6.77 d (2, H-8), 6.59 d (2, H-6), 5.69 d (12, H-3), 5.36 d (12, H-2), 3.86 (methoxyl), 2.39, 2.31, 2.30 (acetates on rings A + B), 2.03 ppm (Ac on C-3); MS m/e 486 (M^+ , 5%), 444 (20%), 402 (50%), 384 (60%), 360 (40%), 342 (80%), 300 (60%), 206 (25%), 195 (20%), 166 (100%), 164 (80%), 153 (70%), 137 (50%) and 128 (10%).

To a soln of 0.05 g of **1b** in 2.5 ml HOAc and 1.5 ml H_2O heated to 100° was added 0.2 g Zn dust in small portions over 2 hr. The mixture was poured into H_2O , neutralized with $NaHCO_3$ and extracted with EtOAc. Evapn of the washed and dried extract furnished 20 mg of **2d**, mp 85–90°; NMR signals ($CDCl_3$) at δ 12.05 (5-OH), 7.1 c (3H, H-3', H-4' and H-6'), 6.00 d (2, H-8), 5.90 d (2, H-6), 5.28 dd (12,3, H-2), 2.90 m (2H, H-3a and H-3b) and 2.35 ppm (methoxyl); MS m/e 344 (M^+ , 25%), 302 (100%), 153 (70%), 150 (60%), 93 (50%) and 77 (40%). The above (15 mg) in 2 ml MeOH was allowed to stand with 1 ml 50% methanolic HCl for 1 hr. The solvent was evapd and the residue recrystallized from EtOAc to give **2e**, mp 155–160°; NMR signals ($CDCl_3$) at δ 7.00 d (2, H-6'), 6.95 (2H, H-3' and H-4'), 6.00 (2H, H-6 and H-8), 5.30 dd (12,3, H-3), 3.95 (OMe) and 2.90 m ppm (2H, H-3a and H-3b); MS m/e 302 (M^+ , 100%), 287 (80%), 153 (40%) and 150 (30%). Methylation of **2e** with CH_2N_2 gave **2c**, mp 122–124°, mmp with trimethyl ether of **2a** (*vide infra*) 122–124°, TLC behavior identical.

(b) Methylation of 30 mg of **1a** with CH_2N_2 gave a mixture of two products which were separated by PLC (C_6H_6 –EtOAc, 9:1). The less polar material **1d** was recrystallized from MeOH, yield 16 mg, mp 115°; NMR signals ($CDCl_3$) at δ 11.32 (5-OH), 7.0 c (3H, H-3', H-4' and H-6'), 6.18 (2H, H-6 and H-8), 5.1 d (12, H-2), 4.60 d (12, H-3), 4.00, 4.00 and 3.90 ppm (OMe); MS m/e 346 (M^+ , 15%), 328 (30%), 317 (50%), 179 (60%) and 167 (100%). The more polar product **1c** was recrystallized from EtOAc, yield 14 mg, mp 158°; NMR signals at δ 11.20 (5-OH), 7.0 c (3H, H-3', H-4' and H-6'), 6.15 d (2, H-8), 6.10 d (2, H-6), 5.05 d (12, H-2), 4.55 d (12, H-3), 3.98 and 3.94 ppm (OMe); MS m/e 332 (M^+), 314, 167 and 165. Reaction of 10 mg of **1c** with 2 N H_2SO_4 in the manner described in the next paragraph gave 4 mg of **3a**, mmp with **3a** from plant 205°, TLC behavior identical.

(c) A soln of 50 mg of **1a** in 4 ml 2 N H_2SO_4 was heated on a steam bath for 20 hr during which time some solid material precipitated. The entire mixture was poured into H_2O and extracted with Et_2O . The Et_2O was further extracted with EtOAc. Evapn of the ether resulted in recovery of 10 mg of **1a**. Evapn of the EtOAc layer and recrystallization from MeOH furnished 20 mg of **3d**, mp 200°; NMR signals (Me_2CO-d_6) at δ 11.33 (5-OH), 6.8–7.2 c (3H, H-3' and H-4' and H-6'), 5.90 d (2, H-8), 5.60 d (2, H-6) and 3.35 ppm (OMe); MS m/e 316 (M^+ , 100%), 301 (60%), 299 (5%), 287 and 153 (40%). Methylation of **3d** (15 mg) with CH_2N_2 gave **3c** (15 mg), mp 140–145°, mmp with **3d** from **3a** (*vide infra*) undepressed; TLC behavior, UV and NMR spectra identical.

(d) A soln of 50 mg of **1a** in 2 ml Ac_2O was refluxed for 8 hr. After removal of Ac_2O in *vacuo* the residue displayed 2 spots on TLC. The products were separated by PLC (C_6H_6 –EtOAc, 4:1). The less polar product, yield 10 g, mp 88–90° from MeOH, was the triacetate **4** on the basis of its MS which exhibited peaks at m/e 426 (M^+ , 5%), 384 (25%), 342 (50%) and 300 (100%). The more polar gummy product, yield 3 mg, was identified as the tetraacetate **3e** on the basis of its MS which exhibited peaks at m/e 484 (M^+ , 5%), 442 (10%), 400 (25%), 358 (60%) and 316 (100%).

Reactions of 2a. (a) Acetylation of **2a** (15 mg) with Ac_2O and a drop of conc. H_2SO_4 in the manner described for **1a** and recrystallization from MeOH gave the tetraacetate **2b** (15 mg), mp 70–72°; NMR signals ($CDCl_3$) at δ 7.60 c (3H, H-3', H-4' and H-6'), 6.80 d (2, H-8), 6.60 d (2, H-6), 5.50 dd (12, 3, H-2), 2.90 m (2H, H-3a and H-3b), 2.40, 2.35, 2.35, 2.35 ppm (acetates); MS m/e 456 (M^+ , 5%), 414 (20%), 372 (30%), 330 (100%), 288 (90%) and 153 (40%).

(b) Methylation of 10 mg of **2a** (CH_2N_2) gave the trimethyl ether **2c** (10 mg), mp 122–124°; MS m/e 330 (M^+), 315, 300, 166 and 164.

Reactions of 3a. (a) Methylation of 20 mg of **3a** with CH_2N_2 gave 20 mg of **3c**, mp 140–145° after recrystallization from EtOAc; UV λ_{max}^{MeOH} 255, 270 (sh), 345, 360 sh, with added $AlCl_3$, 267, 280 sh, 296 sh, 342 sh and 355 nm; NMR signals ($CDCl_3$) at δ 7.80 d (9, H-3'), 7.75 d (2, H-6'), 7.00 dd (9,2, H-4'), 6.45 d (2, H-8), 6.40 (2, H-6), 4.00, 4.00, 3.94, 3.94 ppm (OMe shifted to 3.14, 3.00,

2.87 and 2.67 ppm in C_6D_6)*; MS m/e 358 (M^+ , 100%), 343 (80%), 329 (20%), 315 (20%), 300 (10%) and 167 (50%). (Calc. for $C_{19}H_{18}O_7$: MW, 358.10512. Found: MW (MS): 358.10502). Further methylation of 4 mg of **3c** with $MeI-K_2CO_3$ in refluxing Me_2CO for 12 hr followed by the usual work-up and recrystallization from $EtOAc$ gave 4 mg of **3f**, mp 142° (lit. mp 142–143° [11]) which gave a negative $FeCl_3$ test and exhibited significant MS peaks at m/e 372 (M^+ , 100%), 357 (25%) and 342 (25%).

(b) Acetylation of **3a** (10 mg) with Ac_2O and a drop of conc H_2SO_4 gave the triacetate **3b** (10 mg), mp 85–90° after recrystallization from $EtOAc$; UV λ_{max}^{MeOH} 270, 290 sh and 340 nm; NMR signals ($CDCl_3$) at δ 7.80 *dd* (9.2, H-4'), 7.70 *d* (2, H-6'), 7.10 *d* (9, H-3'), 6.75 (2H, H-2 and H-8), 3.90, 3.80 (OMe), 2.40, 2.30, 2.30 ppm (acetates); MS m/e 456 (M^+ , 5%), 414 (32%), 372 (75%), 329 (100%), 315 (35%), 300 (35%) and 286 (45%).

(c) A soln of 30 mg of **3a** in 5 ml 10% ethanolic KOH was refluxed for 6 hr, acidified with dil HCl and extracted with Et_2O . The organic layer was washed with 5% $NaHCO_3$ soln, the latter was acidified with HOAc and again extracted with Et_2O . Removal of Et_2O provided 3–4 mg of 2-hydroxy-5-methoxybenzoic acid, mp 144° (lit. mp 145–146° [13]), MW (MS): 168.

* NMR spectrum and solvent shifts clearly distinguish **3c** from 5-hydroxy-3,7,3',4'-tetramethoxy- and 5-hydroxy-3,7,2',4'-tetramethoxyflavone whose NMR spectra and solvent shifts are reported by Wilson, R. G., Bowie, J. H. and Williams, D. H. (1968) *Tetrahedron* **24**, 1407.

REFERENCES

1. Harborne, J. B. (1977) in *The Biology and Chemistry of the Compositae* (Heywood, V. H., Harborne, J. B. and Turner, B. L., p. 603. Academic Press, London.
2. Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) *The Systematic Identification of Flavonoids*. Springer, New York.
3. Harborne, J. B., Mabry, T. J. and Mabry, H. (eds.) (1975) *The Flavonoids*. Chapman & Hall, London.
4. Wagner, H., Chari, V. M. and Sonnenbichler, J. (1976) *Tetrahedron Letters* 1799.
5. Wagner, H., Chari, V. M., Seitz, M. and Riess-Maurer, I. (1978) *Tetrahedron Letters* 381.
6. Pavanarasivam, G. and Sultanbawa, M. U. S. (1975) *J. Chem. Soc. Perkin Trans. 1*, 612.
7. Goel, R. N. and Seshadri, T. R. (1958) *Proc. Indian Acad. Sci. Sect. A*, **47** 191.
8. Geissman, T. A. (ed.) (1962) *The Chemistry of Flavonoid Compounds*. MacMillan, New York.
9. Sotnikova, O. M., Chagovets, R. K. and Litvinenko, V. I. (1968) *Khim. Prir. Soedin.* **4**, 82.
10. Mahesh, V. B. and Seshadri, T. R. (1955) *Proc. Indian Acad. Sci.* **41**, 210.
11. Sehgal, J. M. and Seshadri, T. R. (1952) *Proc. Indian Acad. Sci. Sect. A* **36**, 355.
12. Gaffield, W. (1970) *Tetrahedron* **26**, 4093.
13. Chaudhury, D. N., King, H. I. and Robertson, A. (1948) *J. Chem. Soc.* 2220.